

- Main features
- Fragment separator design
- Statistic from LISE++ site
- LISE++ development: past & present

• 2014 development: Organization charts

MICHIGAN STATE

• The main functions of the program:

- □ predict the *fragment separator settings* necessary to obtain a specific RIB;
- □ predict the <u>intensity and purity</u> of the chosen RIB;
- □ simulate <u>identification plots</u> for on-line comparison;
- □ provide a highly <u>user-friendly graphical environment</u>;
- □ allow <u>configuration</u> for different fragment separators.
- The program is <u>constantly expanding</u> and evolving from the feedback of its users around the world.
- The LISE⁺⁺ package includes <u>configuration files</u> for most of the existing fragment and recoil separators found in the world.

Main Features

Fast analytical calculations (Monte Carlo calculations are available too) Reaction mechanisms **Projectile Fragmentation Fusion-Evaporation Fusion-Fission Coulomb Fission** Abrasion-Fission **Two-body reactions (kinematics)** Highly user friendly environment Built-in help support Ion charge state distribution calculations Range and energy loss in material calculations Contribution of secondary reactions in the target Fragment production in Material **Different selection methods Optics calculation**

Built-in powerful tools

* Physical Calculator

- LISE for Excel
- Nuclide and Isomeric states* Databases utilities
- ***** Relativistic Reaction Kinematics Calculations
- Curved degrader calculation
- PACE4 evaporation MC code for Windows
- The spectrometric handbook of J.Kantele & Units converter
- Codes "Global" & "Charge" (charge state distributions)
- Range optimization utility
- "Brho" analyzer, Solenoid (Twinsol)* & ISOL-catcher* utilities
- Transport envelope packet package
- * "Evaporation" calculator
- ۰....

- **Types of transmission calculations in LISE**⁺⁺
- "Distribution" (analytical) method
 - Fast calculations
 - All Optimization procedures in the code based on this method
 - Effective with segmented configurations for experiment planning
 - Calculation of low transmission
- Monte Carlo method: (from 2007)
 - Benchmark for the "Distribution" method
 - Detailed analysis of transmission with extended configurations
 - Possibility to use High Order Optics
 - Observation of correlations between different parameters of different blocks
 - Possible gates on different parameters
 - Good tools for understanding (learning) ion-beam optics issues
 - Effective for fragment separator design
 - Some optical blocks (Solenoid, RF buncher) are effective only in MC mode

Configuration: A1900_S800BL_extended_LISE 2012 2nd order

🖶 Spectrometer designing

Block	Given Name	Z-Q	Length,m	Enable		- Insert Mo	de	- Insert bloc	k
T 🥑 Target	Target			+		(bef	ore	T	Target
ST 💿 Stripper	Stripper			+				STO	Stripper after Target
Dipole	tuning	0	0	+		O afte	er 🔰		Supportation ranget
S 🔲 Drift	z015		0.396	+				WT	Wedge
🍳 🕕 Drift	Q017-1TA		0.748	+		– Move ela	ement—	M	Material(Detector)
S 🔲 Drift	z018		0.176	+					
🍳 🕕 Drift	Q019-1TB		0.748	+		<u> </u>	Up	A	Faraday cup
S 🔲 Drift	z020		0.172	+		J. D	own	D	Dispersive (Displa)
🍳 🕕 Drift	Q021-1TC		0.43	+					Dispersive (Dipole)
S 🔲 Drift	z022		0.526	+				F	Wien velocity filter
Dipole	D1	0	2.43	+		(the second s	Edit	S 🗆	Drift (multipole,slits)
S 🔲 Drift	z030		0.564	+		Y D			
🍳 🕕 Drift	Q031-2TA		0.43	+		<u> </u>	CICIC	K ∽	Beam Rotation
S 🔲 Drift	z032		0.136	+				H⇔	Shift of Optical Axis
🍳 🕕 Drift	Q033-2TB		0.812	+			ок		Electrostatic dinole
S 🔲 Drift	z034		0.136	+					Liechostatic alpoie
🍳 🕕 Drift	Q035-2TC		0.43	+		? +	lelp	G 🔜	Gas-filled separator
S 🔲 Drift	z036		0.586	+	_			с >	Compensating Dipole
find In a	Image1(037)		Π	+	<u> </u>	Tabel			
-Selected Diock		Discout	e (Die ele)		-		erof		RF separator
Enable Iv		Dispersiv	e (Dipole)			Bloc	ks	B	RF buncher
Let call automa	tically 🗖	Block L	ength [m]	0.0001		16	4		
Block name =	tuning	Le this	ngth after	0		Length	[m]	L-B	Solenoid
, Charge State (Z	-Q) = 0	Sequenc	e number	3		82.8	998	Z	Delay (efficiency) block

LISE⁺⁺ optical blocks (2013)

High Order Optics in LISE⁺⁺

MICHIGAN STATE UNIVERSITY LISE++

- LISE⁺⁺ is able to operate with 5th order matrices
- High order optics can be used only in Monte Carlo mode
- LISE⁺⁺ can calculate 1st and 2nd order matrices based on the Transport formalism
- Higher matrices can be loaded (or linked) from files prepared by the COSY code

OT@AIS.MSU 04/14/2014

- \sim Classical (segmented) configuration:
 - Fast transmission calculations
 - Simple structure
 - Effective with analytical calculations for experiment planning
- Extended (elemental) configuration:
 - Detailed analysis of transmission
 - Optical matrices can be calculated in the code, and used in segmented configurations
 - Tools to obtain angular acceptances, which can be used in segmented configurations
 - Good tools for understanding (learning) ion-beam optics issues
 - Effective with Monte Carlo calculations for fragment separator design

Statistics from LISE++ site

Becomes more popular

Statistics : country

Statistics : USA

USA

LISE++ development : past & present

Current development strategy

High priority

- Bug fix (if still exist)
- Requests
 - o FRIB fragment separator group
 - A1900 fragment separator group
 - o FRIB "isotope" group?
- User support
- Tasks from the accepted high priority list
- Sufficient improvement of existent blocks

Medium priority

- Documentation
- Requests
 - Local (MSU)
 - Collaborations
- Tasks from the accepted medium priority list
- Sufficient improvement of existent utilities

Low priority

- Requests
 - o Outside
- Tasks from the accepted low priority list

Strategy

- Engage users in the creation and use of the extended configurations
- Do not create utilities based on outside requests, which wont be widely used

Evidently a lot of simple questions : version for MAC, why I could not produce it.. How to get that and so on..

Serious requests: bugs, configuration questions-analysis-requests, questions-presentations on 10 pages, then answer needs some power point presentation, LISE⁺⁺ file

Name	Б	Size	↓Date	Attr	Name	E	Size	↓Date	Att 🗋
€[]		<dir></dir>	10/30/2012	16:17—	^ []		<dir></dir>	12/17/2012	17:27—
[2011_01_0		<dir></dir>	01/20/2011	19:36—	[2012_01_/		<dir></dir>	01/23/2012	16:58—
[2011_01_1		<dir></dir>	01/20/2011	19:35—	[2012_01_(<dir></dir>	01/23/2012	16:58—
[2011_01_2		<dir></dir>	01/28/2011	15:25—	[2012_01_(<dir></dir>	01/23/2012	16:58—
[2011_01_3		<dir></dir>	02/01/2011	11:3 9 —	i [2012_01_J		<dir></dir>	01/23/2012	16:59—
i [2011_02_0		<dir></dir>	02/04/2011	17:50—	[2012_02_]		<dir></dir>	04/03/2012	12:52—
[2011_02_1		<dir></dir>	04/20/2011	12:50—	[2012_03_2]		<dir></dir>	04/03/2012	15:06—
[2011_02_2]		<dir></dir>	06/15/2011	11:31—	[2012_03_/		<dir></dir>	04/03/2012	13:00—
[2011_04_0		<dir></dir>	06/15/2011	13: 49 —	[2012_03_]		<dir></dir>	04/03/2012	12:53—
[2011_04_0		<dir></dir>	04/18/2011	16:44—	[2012_04_(<dir></dir>	04/16/2012	11:15—
[2011_07_2		<dir></dir>	07/29/2011	15:16—	[2012_04_/		<dir></dir>	05/18/2012	13:21—
[2011_07_2		<dir></dir>	07/29/2011	15:16—	🗀 [2012_04_c		<dir></dir>	05/18/2012	13:29—
[2011_07_2		<dir></dir>	07/29/2011	15:15—	i [2012_04_F		<dir></dir>	05/18/2012	13:29—
[2011_08_0		<dir></dir>	10/03/2011	16:11—	i [2012_05_E		<dir></dir>	05/18/2012	13:22—
[2011_09_4		<dir></dir>	11/14/2011	16:28—	[2012_06_2]		<dir></dir>	06/25/2012	17:17—
[2011_09_C		<dir></dir>	11/0//2011	09:4/—	[2012_08_(<dir></dir>	08/31/2012	12:55—
[2011_09_F		<dir></dir>	12/13/2011	16:09-	[2012_08_2]		<dir></dir>	08/31/2012	12:57—
		<uik></uik>	11/04/2011	10:53-	[2012_09_1]		<dir></dir>	10/21/2012	11:29—
		<dir></dir>	11/04/2011	10:51-	[2012_10_1]		<dir></dir>	10/30/2012	16:28—
			11/14/2011	12:15-	[2012_10_2]		<dir></dir>	10/26/2012	10:38—
		<uik></uik>	12/01/2011	12:03-	[2012_10_2]		<dir></dir>	10/26/2012	11:13—
			10/20/2012	11.47	[2012_10_2]		<dir></dir>	11/12/2012	15:10—
			10/25/2012	11:4/	[2012_12_(<dir></dir>	12/06/2012	14:06—
		<dik></dik>	12/10/2011	13.40	[2012 12 1]		<dir></dir>	12/17/2012	17:27—

[2012_01_13] <dir></dir>	01/25/2013 17:28-
[2013_02_17] <dir></dir>	02/18/2013 12:45-
[2013_02_18] <dir></dir>	02/18/2013 11:03-
[2013_02_26] <dir></dir>	02/26/2013 15:01-
[2013_03_02] <dir></dir>	03/06/2013 12:50-
[2013_03_04] <dir></dir>	03/06/2013 12:49-
[2013_03_11] <dir></dir>	04/02/2013 12:31-
[2013_03_13] <dir></dir>	03/27/2013 12:12
[2013_03_14] <dir></dir>	03/19/2013 14:47-
[2013_03_16] <dir></dir>	03/19/2013 14:46
🗀 [2013_03_18] <dir></dir>	03/20/2013 12:38-
[2013_03_18] <dir></dir>	04/08/2013 10:06-
🗀 [2013_03_19] <dir></dir>	03/19/2013 14:43-
🗀 [2013_03_20] <dir></dir>	07/09/2013 16:25-
[2013_03_21] <dir></dir>	03/22/2013 10:55-
🗀 [2013_03_22] <dir></dir>	03/28/2013 14:42-
[2013_03_25] <dir></dir>	03/26/2013 13:07-
[2013_03_26] <dir></dir>	03/26/2013 13:07-
🗀 [2013_03_26] <dir></dir>	03/26/2013 13:09-
🗀 [2013_04_02] <dir></dir>	04/03/2013 16:51-
🗀 [2013_04_02] <dir></dir>	04/12/2013 16:22-
🗀 [2013_04_08] <dir></dir>	04/08/2013 10:40-
🗀 [2013_05_09] <dir></dir>	06/25/2013 13:42-
🗀 [2013_05_23] <dir></dir>	12/06/2013 12:08-
🗀 [2013_05_28] <dir></dir>	06/21/2013 12:37-
🗀 [2013_06_19] <dir></dir>	06/24/2013 12:01-
🗀 [2013_06_26] <dir></dir>	06/27/2013 10:57-
🗀 [2013_07_05] <dir></dir>	07/09/2013 16:24-
🗀 [2013_07_08] <dir></dir>	07/09/2013 16:24-
🗀 [2013_07_11] <dir></dir>	07/17/2013 12:15-
🗀 [2013_07_16] <dir></dir>	07/17/2013 12:14-
🗀 [2013_07_17] <dir></dir>	07/17/2013 12:14-
🗀 [2013_08_06] <dir></dir>	09/09/2013 10:04
🗀 [2013_09_13] <dir></dir>	10/08/2013 15:12-
🗀 [2013_09_17] <dir></dir>	09/17/2013 13:58-
🗀 [2013_09_18] <dir></dir>	09/17/2013 14:43-
🗀 [2013_09_18] <dir></dir>	09/17/2013 14:48-
🗀 [2013_10_01] <dir></dir>	10/08/2013 15:11-
🗀 [2013_10_08] <dir></dir>	10/08/2013 15:11-
🗀 [2013_10_09] <dir></dir>	10/14/2013 09:41
🗀 [2013_10_18] <dir></dir>	10/29/2013 13:57-
🗀 [2013_10_29] <dir></dir>	10/29/2013 13:57-
🗀 [2013_10_29] <dir></dir>	10/29/2013 13:57-
[2013 11 05] <dir></dir>	11/18/2013 13:57-

[2013_11_18..] <DIR> 11/18/2013 13:58-18

10/10/2013 7:05 PM

LISE++ development done

Subject	Priority	Status	new	Order	Time
LongTerm	l				
LISE for Mac EXCEL	high	done	Х	1	1.5 weeks
Two-body reactions : user differential cross section - utilities	high	done	Х	5.1	1.5 week
Two-body reactions : user differential cross section - using in transmission calculations	high	done	X	5.3	1 week
ShortTerm	1				
Help links from dialogs on the LISE++ site	high	done	X	2	2 days
Two or more locations for the MC output file	high	done	Х	3.2	2 days
Input source of ions @ MC (A,Z,q,E,E*,dt,x,x',y,y')	high	done	Х	3.3	2 days
Corrections in PACE4's Quantum-Mechanical mode	high	done	Х	4	2 days
Two-body reactions : manually set excitation energy of fragment	high	done	X	5.2	3 days
Develop a subroutine to calculate a reduced dispersion for large values of dP/P	high	done		6.1	< 4 days
Improvement of existent blocks : Electrostaticx dipole, transport solution	high	done	Х	6.2	< 5 days
Creation of Electrocstatic Quad (see Drift block)	high	done	Х	6.3	< 3 days
New block : SHIFT (position & direction of optical axis)	high	done	Х	6.4	< 3 days
MC Gates : A,Z,Q, A/q	medium	done		3.1	< 2 days
MC gates procedure optimization for speed	medium	done	Х	3.4	1 day
Easy way to change the charge state option	medium	done	X		< 1 day
Beam and setting fragment charge state distributions @ selected point	medium	done	X		1 day
neutron channel in Two-body reaction in the "User Diff.CS" case	medium	done		7	4 days
Kinematics calculator: g, n	low	done	X	7.1	2 days

2014 LISE⁺⁺ long term tasks

Subject	Priority	Status	new	Order	Time
LongTerm					
Evaporation cascade: improvement, create Monte Carlo version	high			1	1 month
Abrasion-Ablation: create Monte Carlo version	high			2	2 weeks
Abrasion-Fission: create Monte Carlo version	high			3	2 weeks
Abrasion-Fission: new analytical model. Calculations (CS, E*,TKE) are kept in files	high		x	4	1 month
Time in the distribution4 class (RF-buncher, RF-kicker)	medium		x		1-2 weeks
Custom shape degrader optimization in MC mode for high order optics	medium				< 2 weeks
Input angles in wedge in MC mode	medium				<1 week
ETACHA implementation	medium				1.5 months
ADA (Abrasion-Dissipation-Ablation) model creation	medium				2 months
Implementation of Intranuclear cascade (INC) model in LISE++ Windows	medium				3 months
Minimization in LISE++ (light version only for quad fields)	medium				1 months
Minimization in LISE++ (TRANSPORT, MC, Ray tracing cases)	medium				2 months
Write full LISE++ documentation	medium				3 months
Ray tracing in LISE++	low				1 year
New compliler, New Shell	low				6 months
PACE4 generator of one event (creation dll-library)	low				<1 week
PACE4 in MC LISE++ (using PACE4 dll-library)	low				<1 week
The "MOTER" code development	low				1 year
Energy loss in PACE4	low				<1 week
Three-body kinematics relativistic calculator	low				1 month
Water wedge procedure (wedge with one moving plane and filled by liquid)	low				< 2 weeks
Trochoidal Mass Separator	low		×		1-2 weeks
Calculation of composition from time of isotope implanted in detectors	low		×		1-2 weeks

Subject	Priority	Status	new	Order	Time
ShortTerm					
Superposition Quadrupole and Sextupole fileds in LISE++	high		x	1	< 2 days
Improvement of existent blocks : Compensating dipole	high		x	2	< 5 days
MARS fragment-separator & Compensating dipole	high		x	3	< 5 days
Improvement of existent blocks : gas-filled dipole	high		×	4	< 5 days
Gas-filled dipole : rays-tracing mode in MC	high		×	5	< 5 days
Gates for analytical solutions (like done for MC)	medium		×		< 2 days
Cross section for stripper	medium				< 2 days
Create possibility to Insert a material before the target	medium		×		2 days
Rutherford scattering of the primary beam (transmission)	medium		x		< 2 days
User database: import, edit, plot	low				< 5 days
Wedge (including curved profile wedge) inclination	low				<4 days
Brho method to measure T1/2 (MC: possibility of decay in flight)	low				< 5 days
High order optics calculation: improvement, adaptation GICOSY format	low				< 3 days
MOCADI <-> LISE++ converter	low				<4 dyas
Transport <-> LISE++ converter	low				< 2 days
m-rad dimensions for LISE++ optics	low				< 2 dasy
Problem with Projectile Fragmentation in the Catcher utility	low				<1 day
Simulation reactions in Si-telescope in MC mode	low				<4 days

2014 LISE++ development

Organization charts

	Priorities:
Experts:	1 – highest
Beam physicist (BPh)	2
Theory physicist (TPh)	3
Software programmer (SPr)	4
Hardware programmer (HPr)	5 - lowest

Priorities: 1 – highest 2 3 4 5 - lowest	Experts: Beam physicist (BPh) Theory physicist (TPh) Software programmer (SPr) Hardware programmer (HPr)
---	--

Priorities: 1 – highest 2 3 4 5 - lowest	Experts: Beam physicist (BPh) Theory physicist (TPh) Software programmer (SPr) Hardware programmer (HPr)
---	--

Priorities: 1 – highest 2 3 4 5 – lowport	Experts: Beam physicist (BPh) Theory physicist (TPh) Software programmer (SPr) Hardware programmer (HPr)
5 - lowest	naruware programmer (m-r)

<u>Physics</u>[◊]: 2014 3-

2014 3-4 m 2015 2-3 m >=2016 2-4 m

<u>IVIII III I IIZ</u>		
>=2016	2-4 m	50% Pr
>=2017	3-6 m	80% Pr

Minimization:

<u>Shell:</u>

2014	5-7 m	90% Pr
2015	5-7 m	90% Pr
2015	4-6 m	50% Pr
>=2016	2-4 m	90% Pr
>=2017	2-4 m	100% Pr
>=2017	6-12 m	100% Pr
>=2017	2-4 m	50% Pr + 50% Ph

Experiment Set-up feedback:

>=2017	1-2 y	30% Pr + 70% Ph
>=2019	1-2 y	30% Pr + 70% Ph

Optics:

2014	1.5-2.5 m
2015	1 m
>= 2016	1 m

Program support:

>=2016 3-6 m 90% Ph annually 1 m

> Experts: Beam physicist (BPh) Theory physicist (TPh) Software programmer (SPr) Hardware programmer (HPr)

[◊] - without research

2014:					
Physics	3-4 m				
Shell	5-7 m	90% Pr			
Optics	1.5-2 m		>-2017·		
Support	0.5 m		<u> </u>		
Total	10 12 E m		Shell1	2-4 m	100% Pr
Total	10-13.5 11		Shell2	6-12 m	100% Pr
			Shell3	2-4 m	50% Pr + 50% Ph
			Support	1 m	
			Minimization	3-6 m	80% Pr
2015:					
Physics	2-3 m		Experiment Set	-up	
Shell	5-7 m	90% Pr	Feedback	12-24 m	30% Pr + 70% Ph
Shell	4-6 m	50% Pr			
Optics	1 m		Total	26-49 m	
Support	1 m				
Total	13-18 m				
			0040		

>=2	<u>016:</u>

Physics	2-4 m	
Shell	2-4 m	90% Pr
Optics	1 m	
Minimization	2-4 m	50% Pr
Support	1 m	
Documentn	3-6 m	90% Ph
Total	11-20 m	

<u>>=2019:</u>

Experiment Set	t-up	
Feedback	1-2 y	30% Pr + 70% Ph

Summary	
2014-2015	: 2 (Ph & Pr)
2016	: 2-3? (2xPh & Pr)
>=2017	: 3 (2xPh & Pr)